These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Forces and mechanical energy fluctuations during diagonal stride roller skiing; running on wheels? Author: Kehler AL, Hajkova E, Holmberg HC, Kram R. Journal: J Exp Biol; 2014 Nov 01; 217(Pt 21):3779-85. PubMed ID: 25189366. Abstract: Mechanical energy can be conserved during terrestrial locomotion in two ways: the inverted pendulum mechanism for walking and the spring-mass mechanism for running. Here, we investigated whether diagonal stride cross-country roller skiing (DIA) utilizes similar mechanisms. Based on previous studies, we hypothesized that running and DIA would share similar phase relationships and magnitudes of kinetic energy (KE), and gravitational potential energy (GPE) fluctuations, indicating elastic energy storage and return, as if roller skiing is like 'running on wheels'. Experienced skiers (N=9) walked and ran at 1.25 and 3 m s(-1), respectively, and roller skied with DIA at both speeds on a level dual-belt treadmill that recorded perpendicular and parallel forces. We calculated the KE and GPE of the center of mass from the force recordings. As expected, the KE and GPE fluctuated with an out-of-phase pattern during walking and an in-phase pattern during running. Unlike walking, during DIA, the KE and GPE fluctuations were in phase, as they are in running. However, during the glide phase, KE was dissipated as frictional heat and could not be stored elastically in the tendons, as in running. Elastic energy storage and return epitomize running and thus we reject our hypothesis. Diagonal stride cross-country skiing is a biomechanically unique movement that only superficially resembles walking or running.[Abstract] [Full Text] [Related] [New Search]