These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Targeting the oncogenic MUC1-C protein inhibits mutant EGFR-mediated signaling and survival in non-small cell lung cancer cells.
    Author: Kharbanda A, Rajabi H, Jin C, Tchaicha J, Kikuchi E, Wong KK, Kufe D.
    Journal: Clin Cancer Res; 2014 Nov 01; 20(21):5423-34. PubMed ID: 25189483.
    Abstract:
    PURPOSE: Non-small cell lung cancers (NSCLC) that express EGF receptor with activating mutations frequently develop resistance to EGFR kinase inhibitors. The mucin 1 (MUC1) heterodimeric protein is aberrantly overexpressed in NSCLC cells and confers a poor prognosis; however, the functional involvement of MUC1 in mutant EGFR signaling is not known. EXPERIMENTAL DESIGN: Targeting the oncogenic MUC1 C-terminal subunit (MUC1-C) in NSCLC cells harboring mutant EGFR was studied for effects on signaling, growth, clonogenic survival, and tumorigenicity. RESULTS: Stable silencing of MUC1-C in H1975/EGFR(L858R/T790M) cells resulted in downregulation of AKT signaling and inhibition of growth, colony formation, and tumorigenicity. Similar findings were obtained when MUC1-C was silenced in gefitinib-resistant PC9GR cells expressing EGFR(delE746_A750/T790M). The results further show that expression of a MUC1-C(CQC → AQA) mutant, which blocks MUC1-C homodimerization, suppresses EGFR(T790M), AKT and MEK → ERK activation, colony formation, and tumorigenicity. In concert with these results, treatment of H1975 and PC9GR cells with GO-203, a cell-penetrating peptide that blocks MUC1-C homodimerization, resulted in inhibition of EGFR, AKT, and MEK → ERK signaling and in loss of survival. Combination studies of GO-203 and afatinib, an irreversible inhibitor of EGFR, further demonstrate that these agents are synergistic in inhibiting growth of NSCLC cells harboring the activating EGFR(T790M) or EGFR(delE746-A750) mutants. CONCLUSIONS: These findings indicate that targeting MUC1-C inhibits mutant EGFR signaling and survival, and thus represents a potential approach alone and in combination for the treatment of NSCLCs resistant to EGFR kinase inhibitors.
    [Abstract] [Full Text] [Related] [New Search]