These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Poly aspartic acid peptide-linked PLGA based nanoscale particles: potential for bone-targeting drug delivery applications.
    Author: Jiang T, Yu X, Carbone EJ, Nelson C, Kan HM, Lo KW.
    Journal: Int J Pharm; 2014 Nov 20; 475(1-2):547-57. PubMed ID: 25194353.
    Abstract:
    Delivering drugs specifically to bone tissue is very challenging due to the architecture and structure of bone tissue. Poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs) hold great promise for the delivery of therapeutics to bone tissue. The goal of the present research was to formulate a PLGA-based NP drug delivery system for bone tissue exclusively. Since poly-aspartic acids (poly-Asp) peptide sequence has been shown to bind to hydroxyapatite (HA), and has been suggested as a molecular tool for bone-targeting applications, we fabricated PLGA-based NPs linked with poly-Asp peptide sequence. Nanoparticles made of methoxy - poly(ethylene glycol) (PEG)-PLGA and maleimide-PEG-PLGA were prepared using a water-in-oil-in-water double emulsion and solvent evaporation method. Fluorescein isothiocyanate (FITC)-tagged poly-Asp peptide was conjugated to the surface of the nanoparticles via the alkylation reaction between the sulfhydryl groups at the N-terminal of the peptide and the CC double bond of maleimide at one end of the polymer chain to form thioether bonds. The conjugation of FITC-tagged poly-Asp peptide to PLGA NPs was confirmed by NMR analysis and fluorescent microscopy. The developed nanoparticle system is highly aqueous dispersible with an average particle size of ∼80 nm. In vitro binding analyses demonstrated that FITC-poly-Asp NPs were able to bind to HA gel as well as to mineralized matrices produced by human mesenchymal stem cells and mouse bone marrow stromal cells. Using a confocal microscopy technique, an ex vivo binding study of mouse major organ ground sections revealed that the FITC-poly-Asp NPs were able to bind specifically to the bone tissue. In addition, proliferation studies indicated that our FITC-poly-Asp NPs did not induce cytotoxicity to human osteoblast-like MG63 cell lines. Altogether, these promising results indicated that this nanoscale targeting system was able to bind to bone tissue specifically and might have a great potential for bone disease therapy in clinical applications.
    [Abstract] [Full Text] [Related] [New Search]