These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Horseradish peroxidase immobilization on carbon nanodots/CoFe layered double hydroxides: direct electrochemistry and hydrogen peroxide sensing.
    Author: Wang Y, Wang Z, Rui Y, Li M.
    Journal: Biosens Bioelectron; 2015 Feb 15; 64():57-62. PubMed ID: 25194796.
    Abstract:
    Carbon nanodots and CoFe layered double hydroxide composites (C-Dots/LDHs) were prepared via simply mixing C-Dots and CoFe-LDHs. The as-prepared composites were used for the immobilization of horseradish peroxidase (HRP) on the glass carbon (GC) electrode. The electrochemical behavior of the HRP/C-Dots/LDHs/GC electrode and its application as a H2O2 biosensor were investigated. The results indicated that HRP immobilized by C-Dots/LDHs retained the activity of enzyme and displayed quasi-reversible redox behavior and fast electron transfer with an electron transfer rate constant ks of 8.46 s(-1). Under optimum experimental conditions, the HRP/C-Dots/LDHs/GC electrode displayed good electrocatalytic reduction activity and excellent analytic performance toward H2O2. The H2O2 biosensor showed a linear range of 0.1-23.1 μM (R(2) = 0.9942) with a calculated detection limit of 0.04 μM (S/N = 3). In addition, the biosensor exhibited high sensitivity, good selectivity, acceptable reproducibility and stability. The superior properties of this biosensor are attributed to the synergistic effect of HRP, C-Dots and CoFe-LDHs, which has been proved by investigating their electrochemical response to H2O2. Thus the C-Dots and LDHs composites provide a promising platform for the immobilization of redox enzymes and construction of sensitive biosensors.
    [Abstract] [Full Text] [Related] [New Search]