These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of prolonged neuronal nitric oxide synthase inhibition on the development and expression of L-DOPA-induced dyskinesia in 6-OHDA-lesioned rats. Author: Padovan-Neto FE, Cavalcanti-Kiwiatkoviski R, Carolino RO, Anselmo-Franci J, Del Bel E. Journal: Neuropharmacology; 2015 Feb; 89():87-99. PubMed ID: 25196732. Abstract: It is well known that nitric oxide (NO) interacts with dopamine (DA) within the striatal circuitry. The anti-dyskinetic properties of NO synthase (NOS) inhibitors demonstrate the importance of NO in L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID). Here, we investigated the ability of a daily co-treatment of the preferential neuronal NOS (nNOS) inhibitor, 7-nitroindazole (7-NI, 30 mg/kg), with L-DOPA (30 mg/kg) to counteract LID in unilaterally 6-OHDA-lesioned rats. We analyzed striatal nNOS-expressing interneurons, DA and 5-HT neurochemistry in the striatum and alterations of the Fos-B/ΔFosB expression in the corticostriatal, nigrostriatal and mesolimbic pathways. Prolonged administration of 7-NI inhibited the manifestation of chronic L-DOPA treatment-induced abnormal involuntary movements (AIMs). LID was associated with an up-regulation in the number of nNOS-expressing interneurons in the lateral but not medial striatum. nNOS inhibition reduced the number of nNOS-expressing interneurons. The anti-dyskinetic effects of 7-NI correlated with a reduction in DA and 5-HT turnover in the striatum. At postsynaptic striatal sites, 7-NI prevented L-DOPA-induced Fos-B/ΔFosB up-regulation in the motor cortex, nucleus accumbens and striatum. Finally, 7-NI blocked Fos-B/ΔFosB expression in nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d)-positive interneurons in the striatum. These results provide further evidence of the molecular mechanisms by which NOS-inhibiting compounds attenuate LID. The involvement of NO with DA and 5-HT neurochemistry may contribute to the understanding of this new, non-dopaminergic therapy for the management of LID.[Abstract] [Full Text] [Related] [New Search]