These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification of the reactive glutathione conjugate S-(2-chloroethyl)glutathione in the bile of 1-bromo-2-chloroethane-treated rats by high-pressure liquid chromatography and precolumn derivatization with o-phthalaldehyde.
    Author: Marchand DH, Reed DJ.
    Journal: Chem Res Toxicol; 1989; 2(6):449-54. PubMed ID: 2519736.
    Abstract:
    The conjugation of glutathione with 1,2-dihaloethanes leads to the formation of S-(2-haloethyl)glutathione which, following intramolecular cyclization, produces an electrophilic thiiranium ion. The extent to which the formation of the thiiranium ion is responsible for the toxicity associated with 1,2-dihaloethanes has been difficult to determine because of the inherent instability of the compound under physiological conditions. The goal of this study was to attempt to identify a putative precursor of the thiiranium ion, S-(2-chloroethyl)glutathione (CEG), in the bile of rats treated with 1,2-dihaloethanes such as 1-bromo-2-chloroethane (BCE). In order to detect the presence of CEG, a precolumn procedure for derivatizing the amine of CEG with o-phthalaldehyde/2-mercaptoethanol (OPA/MCE) was developed. Studies with a model compound, S-ethylglutathione, indicated that the derivatization reaction between S-ethylglutathione and OPA/MCE proceeded rapidly and under mild conditions. The resulting fluorescent adduct of S-ethylglutathione was detected at low concentrations following separation by reverse-phase HPLC. Derivatization of CEG with OPA/MCE followed by preparative HPLC and mass spectral analysis revealed that the major fluorescent adduct in the reaction mixture was the expected 1-[(2-hydroxyethyl)thio]-2-substituted-isoindole derivative of CEG. Also present in the derivatization reaction mixture were small quantities of S-(2-hydroxyethyl)glutathione, the product of CEG hydrolysis, and a product involving the addition of MCE to CEG. Analysis of the bile samples obtained from bile-cannulated rats treated with BCE showed the presence of a peak corresponding to CEG. Over a 3-h interval, 2% of the BCE administered was excreted into the bile as CEG.
    [Abstract] [Full Text] [Related] [New Search]