These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reliability of the mouse model of choroidal neovascularization induced by laser photocoagulation.
    Author: Poor SH, Qiu Y, Fassbender ES, Shen S, Woolfenden A, Delpero A, Kim Y, Buchanan N, Gebuhr TC, Hanks SM, Meredith EL, Jaffee BD, Dryja TP.
    Journal: Invest Ophthalmol Vis Sci; 2014 Sep 09; 55(10):6525-34. PubMed ID: 25205860.
    Abstract:
    PURPOSE: We attempted to reproduce published studies that evaluated whether the following factors influence choroidal neovascularization (CNV) induced by laser photocoagulation in murine retinas: small interfering RNA (siRNA), cobra venom factor, complement factors C3 and C5, and complement receptor C5aR. In addition, we explored whether laser-induced CNV in mice was influenced by the vendor of origin of the animals. METHODS: Reagents or genotypes reported by others to influence CNV in this model were assessed using our standard procedures. Retrospective analyses of control or placebo mice in many experiments were done to evaluate whether the CNV area induced by laser photocoagulation varied according to vendor. RESULTS: Administration of the following agents did not have a substantial impact on the CNV induced by laser burns in mice: siRNA, low-molecular-weight inhibitor of the C5a receptor (PMX53), or cobra venom factor. Jackson Laboratory (JAX) mice lacking either C3 or C5 had increased neovascularization compared to non-littermate JAX wild-type controls. Taconic mice lacking C3 had reduced CNV compared to non-littermate Taconic wild-type control mice. A retrospective analysis of vehicle-treated wild-type C57BL/6 mice used as controls across 132 experiments conducted from 2007 to 2010 revealed that mice purchased from JAX or from Charles River produced less neovascularization than mice from Taconic. CONCLUSIONS: We present our recommended methods for conducting experiments with the mouse laser-induced CNV model to enhance reproducibility and minimize investigator bias.
    [Abstract] [Full Text] [Related] [New Search]