These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Myosin heavy chain isoform expression in adult and juvenile mini-muscle mice bred for high-voluntary wheel running.
    Author: Talmadge RJ, Acosta W, Garland T.
    Journal: Mech Dev; 2014 Nov; 134():16-30. PubMed ID: 25217814.
    Abstract:
    The myosin heavy chain (MyHC) isoform composition of locomotor and non-locomotor muscles of mini-muscle mice were assessed at the protein and mRNA levels in both adult and juvenile (21 day old) mice. Mini-muscle mice are one outcome of a replicated artificial selection experiment in which four lines of mice were bred for high voluntary wheel running (HR lines). Two of the lines responded with an increase in frequency of a single nucleotide polymorphism in an intron in the MyHC-2b gene (myh4) that when homozygous causes a dramatic reduction in triceps surae mass. We found that both locomotor and non-locomotor muscles of adult mini-muscle mice displayed robust reductions, but not elimination, of the MyHC-2b isoform at both the protein and mRNA levels, with commensurate increases in MyHC-2x and sometimes MyHC-2a, as compared with either a line of HR mice that does not display the mini-muscle phenotype or inbred C57Bl6 mice. Immunohistochemical analyses revealed that locomotor muscles of mini-muscle mice contain fibers that express the MyHC-2b isoform, which migrates normally in SDS-PAGE gels. However, these MyHC-2b positive fibers are generally smaller than the surrounding fibers and smaller than the MyHC-2b positive fibers of non-mini-muscle mice, resulting in characteristically fast muscles that lack a substantial MyHC-2b positive (superficial) region. In contrast, the masseter, a non-locomotor muscle of mini-muscle mice contained MyHC-2b positive fibers that stained more lightly for MyHC-2b, but appeared normal in size and distribution. In adults, many of the MyHC-2b positive fibers in the mini-muscle mice also display central nuclei. Only a small proportion of small MyHC-2b fibers in mini-muscle mice stained positive for the neural cell adhesion molecule, suggesting that anatomical innervation was not compromised. In addition, weanling (21 day old), but not 5 day old mice, displayed alterations in MyHC isoform content at both the protein and mRNA levels, including reductions in MyHC-2b and elevations in the neonatal (a.k.a. perinatal) isoform of MyHC. Collectively, these data demonstrate that the alterations in the expression of MyHC-2b are not restricted to locomotor muscles and therefore are not caused simply by any possible alterations in locomotor activity (e.g., reduced general activity in home cages). The differences in MyHC composition do not appear to result from a defect in innervation of the MyHC-2b fibers, but may result from an inefficient neonatal-to-2b MyHC isoform transition during development and are consistent with a selective lack of maturation of MyHC-2b fibers caused by reduced expression of the MyHC-2b (myh4) gene.
    [Abstract] [Full Text] [Related] [New Search]