These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.). Author: Rico CM, Lee SC, Rubenecia R, Mukherjee A, Hong J, Peralta-Videa JR, Gardea-Torresdey JL. Journal: J Agric Food Chem; 2014 Oct 08; 62(40):9669-75. PubMed ID: 25220448. Abstract: The implications of engineered nanomaterials on crop productivity and food quality are not yet well understood. The impact of cerium oxide nanoparticles (nCeO2) on growth and yield attributes and nutritional composition in wheat (Triticum aestivum L.) was examined. Wheat was cultivated to grain production in soil amended with 0, 125, 250, and 500 mg of nCeO2/kg (control, nCeO2-L, nCeO2-M, and nCeO2-H, respectively). At harvest, grains and tissues were analyzed for mineral, fatty acid, and amino acid content. Results showed that, relative to the control, nCeO2-H improved plant growth, shoot biomass, and grain yield by 9.0%, 12.7%, and 36.6%, respectively. Ce accumulation in roots increased at increased nCeO2 concentration but did not change across treatments in leaves, hull, and grains, indicating a lack of Ce transport to the above-ground tissues. nCeO2 modified S and Mn storage in grains. nCeO2-L modified the amino acid composition and increased linolenic acid by up to 6.17% but decreased linoleic acid by up to 1.63%, compared to the other treatments. The findings suggest the potential of nanoceria to modify crop physiology and food quality with unknown consequences for living organisms.[Abstract] [Full Text] [Related] [New Search]