These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Concentration of natural radionuclides in raw water and packaged drinking water and the effect of water treatment. Author: Manu A, Santhanakrishnan V, Rajaram S, Ravi PM. Journal: J Environ Radioact; 2014 Dec; 138():456-9. PubMed ID: 25223293. Abstract: The raw water (RW) samples collected from natural sources are subjected to water treatment process, including reverse osmosis (RO), and are packed in bottles as packaged drinking water (PDW). Raw water (21 samples) taken from deep wells of Chennai and Secunderabad which are used in the production of PDW, were analysed for (234)U, (235)U, (238)U, (226)Ra, (228)Ra and (210)Pb activity concentrations. Activity Concentrations of (234)U, (235)U, (238)U, (226)Ra, (228)Ra, (210)Pb and (210)Po in PDW were also analysed. The mean activity concentrations of (234)U, (235)U, (238)U, (226)Ra, (228)Ra and (210)Pb in RW at Chennai were 12.1, ≤1.3, 7.1, 2.6, 27.5, and 16.3 mBq/L respectively. The mean activity concentrations of (234)U, (235)U, (238)U, (226)Ra, (228)Ra and (210)Pb in RW at Secunderabad were found to be 40.9, 1.7, 41.5 84.5, 100.1, and 17.0 mBq/L respectively. The mean concentrations of (234)U, (235)U, (238)U, (226)Ra, (228)Ra, (210)Pb and (210)Po in PDW at Chennai were found to be ≤1.3, ≤1.3, ≤1.3, ≤0.2, ≤1.7, 28.0 and 1.2 mBq/L at Secunderabad were found to be ≤1.3, ≤1.3, 1.7, 4.3, 5.0 and 28.1 mBq/L. The study indicated a considerable reduction in the concentration of natural radionuclides due to water treatment. The reduction ratios of RW to PDW for (234)U, (238)U, (226)Ra, (228)Ra were 97, 96, 94 and 95%. In case of (210)Pb, the PDW showed higher concentration of (210)Pb than RW. This was due to its in growth from (222)Rn which was not removed in the RO process.[Abstract] [Full Text] [Related] [New Search]