These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Calcium-triggered movement of regulated actin in vitro. A fluorescence microscopy study. Author: Honda H, Asakura S. Journal: J Mol Biol; 1989 Feb 20; 205(4):677-83. PubMed ID: 2522555. Abstract: We previously reported setting up an in vitro system for the observation of actin filament sliding along myosin filaments. The system involved a minute amount of fluorescently labelled F-actin, and its movement was monitored by fluorescence microscopy. Here, we report observations of the Ca2+-dependent movement of F-actin complex with tropomyosin plus troponin (regulated actin) added to the movement system in place of pure F-actin. In a wide range of pCa (-log10[Ca2+]) between 3 and 5.5 at 30 degrees C, regulated actin filaments moved rapidly, and the average velocity depended little on the Ca2+ concentration (about 7.5 microns/s). However, when the Ca2+ concentration was decreased to pCa = 5.8 or lower, the filaments suddenly stopped moving. In striking contrast to these observations, unregulated actin moved rapidly within the whole pCa range examined, the average velocity (about 7.5 microns/s) being essentially Ca2+-independent. These observations indicate that (1) tropomyosin-troponin actually gave Ca2+-sensitivity to F-actin, and (2) the movement system was regulated by Ca2+ in an on-off fashion within a narrow range of Ca2+ concentration. In a pCa range between 5.8 and 6.0, regulated actin filaments did not exhibit thermal motion; instead, they had fixed positions in the specimen, possibly because they remained associated with myosin filaments in the background, without sliding past each other. Although regulated actin moved fast in the presence of 1 mM-CaCl2 (pCa = 3) at 30 degrees C, it became entirely non-motile as the temperature was decreased to 25 degrees C or lower. Such a sharp movement/temperature relation was never found for unregulated actin. We assayed regulated actin-activated myosin ATPase in the same conditions as used for microscopy, and found that the ATPase activity depended both on pCa and on the temperature considerably less than the movement of regulated actin. The results suggest that the sliding velocity in the in vitro system would not be proportional to the rate of actin-activated ATPase.[Abstract] [Full Text] [Related] [New Search]