These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Lassa serology in natural populations of rodents and horizontal transmission. Author: Fichet-Calvet E, Becker-Ziaja B, Koivogui L, Günther S. Journal: Vector Borne Zoonotic Dis; 2014 Sep; 14(9):665-74. PubMed ID: 25229705. Abstract: Lassa virus causes hemorrhagic fever in West Africa. Previously, we demonstrated by PCR screening that only the multimammate mouse, Mastomys natalensis, hosts Lassa virus in Guinea. In the present study, we used the same specimen collection from 17 villages in Coastal, Upper, and Forest Guinea to investigate the Lassa virus serology in the rodent population. The aim was to determine the dynamics of antibody development in M. natalensis and to detect potential spillover infections in other rodent species. Immunoglobulin G (IgG) antibody screening was performed using the indirect immunofluorescence assay with the Guinean Lassa virus strain Bantou 289 as antigen. The overall seroprevalence was 8% (129/1551) with the following rodents testing positive: 109 M. natalensis, seven Mastomys erythroleucus, four Lemniscomys striatus, four Praomys daltoni, three Mus minutoides, and two Praomys rostratus. Nearly all of them (122/129) originated from Bantou, Tanganya, and Gbetaya, where Lassa virus is highly endemic in M. natalensis. The antibody seroprevalence in M. natalensis from this high-endemic area (27%; 108/396) depended on the village, habitat, host age, and host abundance. A main positive factor was age; the maximum seroprevalence reached 50% in older animals. Our data fit with a model implicating that most M. natalensis rodents become horizontally infected, clear the virus within a period significantly shorter than their life span, and develop antibodies. In addition, the detection of antibodies in other species trapped in the habitats of M. natalensis suggests spillover infections.[Abstract] [Full Text] [Related] [New Search]