These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: TGFβ and Wnt in cardiac outflow tract defects in offspring of diabetic pregnancies.
    Author: Zhao Z.
    Journal: Birth Defects Res B Dev Reprod Toxicol; 2014 Oct; 101(5):364-70. PubMed ID: 25231192.
    Abstract:
    BACKGROUND: Diabetes mellitus in pregnancy causes defects in infant heart, including the outflow tracts (OFTs). Development of the aorta and pulmonary artery, which are derived from the common OFT in the embryo, is regulated by the transforming growth factor β (TGFβ) and Wnt families, and can be perturbed by hyperglycemia-generated intracellular stress conditions. However, the underlying cellular and molecular mechanisms remain to be delineated. METHODS: Female mice were induced diabetic with streptozotocin. Embryonic and fetal OFTs were examined morphologically and histologically. Cell proliferation was assessed using 5'-bromo-2'-deoxyuridine incorporation assay. Oxidative and endoplasmic reticulum (ER) stress markers and TGFβ factors were detected using immunohistochemistry. The expression of genes in the Wnt-signaling system was assessed using real-time reverse transcription polymerase chain reaction array. The role of activin-A in cell proliferation was addressed by treating embryos cultured in high glucose with activin-A. RESULTS: Maternal diabetes caused complex abnormalities in the OFTs, including aortic and pulmonary stenosis and persistent truncus arteriosus. The development of the endocardial cushions was suppressed, manifested with insufficient cellularization of the tissues. Cell proliferation was significantly decreased under oxidative and ER stress conditions. The expression of genes in the Wnt signaling was significantly altered. Activin-A and Smad3 were found to be expressed in the OFT. Treatment with activin-A rescued cell proliferation in the endocardial cushions. CONCLUSIONS: Maternal diabetes generates oxidative and ER stress conditions, suppresses TGFβ and Wnt signaling, inhibits cell proliferation and cellularization of the endocardial cushions, leading to OFT septal defects. Activin-A plays a role in hyperglycemia-suppressed proliferation of the endocardial cells.
    [Abstract] [Full Text] [Related] [New Search]