These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Retention of radioactive particles and associated effects in the filter-feeding marine mollusc Mytilus edulis.
    Author: Jaeschke BC, Lind OC, Bradshaw C, Salbu B.
    Journal: Sci Total Environ; 2015 Jan 01; 502():1-7. PubMed ID: 25240099.
    Abstract:
    Radioactive particles are aggregates of radioactive atoms that may contain significant activity concentrations. They have been released into the environment from nuclear weapons tests, and from accidents and effluents associated with the nuclear fuel cycle. Aquatic filter-feeders can capture and potentially retain radioactive particles, which could then provide concentrated doses to nearby tissues. This study experimentally investigated the retention and effects of radioactive particles in the blue mussel, Mytilus edulis. Spent fuel particles originating from the Dounreay nuclear establishment, and collected in the field, comprised a U and Al alloy containing fission products such as (137)Cs and (90)Sr/(90)Y. Particles were introduced into mussels in suspension with plankton-food or through implantation in the extrapallial cavity. Of the particles introduced with food, 37% were retained for 70 h, and were found on the siphon or gills, with the notable exception of one particle that was ingested and found in the stomach. Particles not retained seemed to have been actively rejected and expelled by the mussels. The largest and most radioactive particle (estimated dose rate 3.18 ± 0.06 Gyh(-1)) induced a significant increase in Comet tail-DNA %. In one case this particle caused a large white mark (suggesting necrosis) in the mantle tissue with a simultaneous increase in micronucleus frequency observed in the haemolymph collected from the muscle, implying that non-targeted effects of radiation were induced by radiation from the retained particle. White marks found in the tissue were attributed to ionising radiation and physical irritation. The results indicate that current methods used for risk assessment, based upon the absorbed dose equivalent limit and estimating the "no-effect dose" are inadequate for radioactive particle exposures. Knowledge is lacking about the ecological implications of radioactive particles released into the environment, for example potential recycling within a population, or trophic transfer in the food chain.
    [Abstract] [Full Text] [Related] [New Search]