These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Acanthopanax divaricatus var. chiisanensis reduces blood pressure via the endothelial nitric oxide synthase pathway in the spontaneously hypertensive rat model.
    Author: Park SY, Do GM, Lee S, Lim Y, Shin JH, Kwon O.
    Journal: Nutr Res; 2014 Sep; 34(9):797-806. PubMed ID: 25241331.
    Abstract:
    In this study, we investigated the antihypertensive effects of Acanthopanax divaricatus var. chiisanensis extract (AE) and its active compound, acanthoside D (AD), on arterial blood pressure (BP) in vivo and endothelial function in vitro. We hypothesized that AE has antihypertensive effects, which is attributed to enhancement of endothelial function via the improvement of nitric oxide synthesis or the angiotensin II (Ang II) response. Spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats (WKYs) were randomly divided into 7 groups and then fed the following diets for 14 weeks: WKY fed a normal diet (WN); SHR fed a normal diet (SN); SHR fed a high-cholesterol (HC) diet (SH); SHR fed a HC diet with AE of 150, 300, 600 mg/kg body weight (SH-L, SH-M, SH-H); and SHR fed an HC diet with AD of 600 μg/kg body weight (SH-D). Blood pressure was significantly reduced in the SH-H compared with the SH from week 10 until week 14; BP was also significantly decreased in the SHR fed a HC diet with AE of 300 at week 14. Aortic wall thickness showed a tendency to decrease by AE and AD treatment. The SH-H showed increased endothelial nitric oxide synthase (eNOS) expression in the intima and media, compared with the SH. Furthermore, a significant increase in intracellular nitric oxide production was induced by AE and AD treatment in human umbilical vein endothelial cells. A significant increase of phospho-eNOS was found with a high dose of AE in human umbilical vein endothelial cells but not with AD. These results suggest that AE can regulate BP and improve endothelial function via eNOS-dependent vasodilation.
    [Abstract] [Full Text] [Related] [New Search]