These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protective effect of artichoke leaf extract against paracetamol-induced hepatotoxicity in rats.
    Author: El Morsy EM, Kamel R.
    Journal: Pharm Biol; 2015 Feb; 53(2):167-73. PubMed ID: 25243875.
    Abstract:
    CONTEXT: Paracetamol overdose is a predominant cause of hepatotoxicity in both humans and experimental animals. OBJECTIVE: In this study, we investigated the protective effect of aqueous artichoke leaf extract (ALE) against paracetamol-induced liver injury in rats using N-acetylcysteine (NAC) as a reference drug. MATERIALS AND METHODS: Rats were divided into five groups: negative control, paracetamol (2 g/kg, single oral dose), ALE (1.5 g/kg, orally for 14 d), ALE + paracetamol, and NAC (100 mg/kg) + paracetamol. Indices of liver damage (serum alanine aminotransferase and aspartate aminotransferase) were measured. Liver homogenates were analyzed for oxidative stress biomarkers (MDA, malondialdehyde; SOD activity, superoxide dismutase activity; NO, nitric oxide; GSH content, reduced glutathione), glutathione cycling (GR, glutathione reductase), and utilization (GST, glutathione-S-transferase). Apoptosis was assessed using the comet assay. RESULTS: Paracetamol caused marked liver damage as noted by significant increased activities of serum aminotransferases (p < 0.05) as well as a significant increase in hepatic MDA and NO levels (p < 0.001) compared with the negative control group. GSH content, GR, GST, and SOD activities were decreased significantly (p < 0.001). Comet assay parameters (tail length, percentage of tailed cells, percentage of migrated DNA, and tail moment) were increased (p < 0.05), indicating apoptosis. Histopathological examination showed necrotic areas. Pre-treatment with ALE replenished hepatic GSH, reversed oxidative stress parameters, DNA damage, and necrosis induced by paracetamol. DISCUSSION AND CONCLUSION: These results suggest that ALE may protect from paracetamol-induced liver toxicity via its antioxidant and anti-apoptotic properties.
    [Abstract] [Full Text] [Related] [New Search]