These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of basal and calmodulin-activated Ca2+-pump ATPase by fractionated compound 48/80.
    Author: Di Julio D, Hinds TR, Vincenzi FF.
    Journal: Biochim Biophys Acta; 1989 Jun 06; 981(2):337-42. PubMed ID: 2525052.
    Abstract:
    Compound 48/80 (48/80), a mixture of polycationic compounds was fractionated using affinity chromatography on calmodulin-Sepharose. Unfractionated 48/80 and various fractions were tested for their potential inhibitory effects on ATPase activities of isolated human red blood cell membranes. ATPase activities tested included: Mg2+-ATPase, the Na+/K+-pump ATPase, and the Ca2+-pump ATPase in both its basal (calmodulin-independent) and calmodulin-activated state. Neither 48/80 nor its various fractions were very potent or efficacious inhibitors of the Mg2+-ATPase or the Na+/K+-pump ATPase. In agreement with previous reports, 48/80 was found to be an inhibitor of the calmodulin-activated Ca2+-pump ATPase. By contrast, we found that unfractionated, as well as some fractionated, material inhibited both the basal (calmodulin-independent) and calmodulin-activated Ca2+-pump ATPase activity. A fraction designated as Fraction III bound to calmodulin-Sepharose in the presence of Ca2+ and low salt and was eluted in the absence of Ca2+ and 0.15 M NaCl. By gel filtration, Fraction III had an apparent average molecular weight of 2064 (1320 for unfractionated material). Fraction III was the most potent inhibitor of the Ca2+-pump ATPase with IC50 values for the basal and calmodulin-activated forms of the enzyme of 0.6 and 1.2 micrograms/ml, respectively. Inhibition by Fraction III was cooperative with n apparent values of 2.4 and 5.7, respectively, for the basal and calmodulin-activated forms of the enzyme. Thus, binding of 48/80 constituents to calmodulin can not fully account for the observed data. Direct interaction of 48/80 constituent(s) with the enzyme and/or the lipid portion of the membrane is suggested.
    [Abstract] [Full Text] [Related] [New Search]