These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: High affinity [3H]paroxetine binding to serotonin uptake sites in human brain tissue. Author: Bäckström I, Bergström M, Marcusson J. Journal: Brain Res; 1989 May 08; 486(2):261-8. PubMed ID: 2525060. Abstract: [3H]Paroxetine binding to human brain tissue was characterized. Competition studies in the putamen and frontal cortex revealed single-site binding models for binding sensitive to 5-hydroxytryptamine (5-HT) (Ki 1-3 microM) and citalopram (Ki 0.6 nM), which displaced the same amount of binding. However, desipramine, norzimeldine and fluoxetine displaced additional binding (10-20%) and these competitors fitted two-site binding models with high affinity components in the nanomolar range and low affinity components in the micromolar range. The high affinity components approximated the 5-HT- and citalopram-sensitive binding fraction. Most of the [3H]paroxetine binding sites were protease-sensitive, but the low-affinity (microM) sites appeared to be protease-resistant. Based on these findings, only the [3H]paroxetine binding representing the fraction sensitive to 30 microM 5-HT (or e.g. 0.3 microM norzimeldine), was regarded as specific binding. This binding fraction was saturable with an apparent binding affinity (Kd) of 0.03-0.05 nM throughout the brain. The highest binding densities were obtained in the hypothalamus and substantia nigra (Bmax 500 fmol/mg protein). The basal ganglia reached intermediate densities (Bmax 200 fmol/mg protein), whereas cortical areas had low Bmax values (less than 100 fmol/mg protein). The lowest B max value was noted in cerebellar cortex (30 fmol/mg protein). The [3H]paroxetine binding was competitively inhibited by low concentrations of 5-HT, imipramine and norzimeldine, suggesting that the substrate recognition site for 5-HT uptake was labeled. Compounds active at dopaminergic, noradrenergic, histaminergic, 5-HT1, 5-HT2 and cholinergic muscarinic sites did not affect the binding at 100 microM concentrations. It is concluded that [3H]paroxetine is a marker for the 5-HT uptake site in the human brain, provided that an adequate pharmacological definition of specific binding is performed.[Abstract] [Full Text] [Related] [New Search]