These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Depletion of guanine nucleotides with mycophenolic acid suppresses IgE receptor-mediated degranulation in rat basophilic leukemia cells.
    Author: Wilson BS, Deanin GG, Standefer JC, Vanderjagt D, Oliver JM.
    Journal: J Immunol; 1989 Jul 01; 143(1):259-65. PubMed ID: 2525148.
    Abstract:
    In RBL-2H3 rat basophilic leukemia cells, Ag that crosslink IgE-receptor complexes stimulate the turnover of inositol phospholipids, the mobilization of Ca2+ from intra- and extracellular sources, the release of serotonin and other substances from granules and the transformation of the cell surface from a microvillous to a lamellar architecture. This study explores the role of GTP-binding proteins (G proteins) in the control of these biochemical and functional responses. We report that incubating RBL-2H3 cells for 4 h with 10 microM mycophenolic acid (MPA), an inhibitor of de novo GTP synthesis, reduces GTP levels by over 60% and causes an average reduction of 50% in Ag-stimulated serotonin release. This inhibition of secretion is associated with a 50% decrease in the rate of 45Ca2+ influx in MPA-treated cells. In contrast, Ag-stimulated inositol trisphosphate production is only slightly reduced, indicating that the phosphatidylinositol-specific phospholipase C can be activated by Ag in GTP-depleted cells. The membrane responses to IgE receptor cross-linking are unaffected by incubating cells with MPA. Exogenous guanine or guanosine protects the GTP pools in MPA-treated cells and permits normal ion transport and secretory responses to Ag; adenine does not. These results implicate a guanine nucleotide-binding protein in the control of IgE receptor-dependent signal transduction in RBL-2H3 cells. This protein may particularly control the Ca2+ influx pathway that is essential for secretion.
    [Abstract] [Full Text] [Related] [New Search]