These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Immobilization and stabilization of lipase (CaLB) through hierarchical interfacial assembly. Author: Talbert JN, Wang LS, Duncan B, Jeong Y, Andler SM, Rotello VM, Goddard JM. Journal: Biomacromolecules; 2014 Nov 10; 15(11):3915-22. PubMed ID: 25252004. Abstract: Nanostructure-enabled hierarchical assembly holds promise for efficient biocatalyst immobilization for improved stability in bioprocessing. In this work we demonstrate the use of a hierarchical assembly immobilization strategy to enhance the physicochemical properties and stability of lipase B from Candida antarctica (CaLB). CaLB was complexed with iron oxide nanoparticles followed by interfacial assembly at the surface of an oil-in-water emulsion. Subsequent ring opening polymerization of the oil provided cross-linked microparticles that displayed an increase in catalytic efficiency when compared to the native enzyme and Novozym 435. The hierarchical immobilized enzyme assembly showed no leakage from the support in 50% acetonitrile and could be magnetically recovered across five cycles. Immobilized lipase exhibited enhanced thermal and pH stability, providing 72% activity retention after 24 h at 50 °C (pH 7.0) and 62% activity retention after 24 h at pH 3.0 (30 °C); conditions resulting in complete deactivation of the native lipase.[Abstract] [Full Text] [Related] [New Search]