These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bone mesenchymal stem cell functions on the hierarchical micro/nanotopographies of the Ti-6Al-7Nb alloy. Author: Ren N, Zhang S, Li Y, Shen S, Niu Q, Zhao Y, Kong L. Journal: Br J Oral Maxillofac Surg; 2014 Dec; 52(10):907-12. PubMed ID: 25255783. Abstract: We investigated the response of rat bone mesenchymal stem cells (BMSC) placed on the titanium-6aluminium-7niobiuim (Ti-6Al-7Nb) alloy modified by hydrofluoric acid etch combined with subsequent anodic oxidation. Pure titanium (Ti) discs and Ti-6Al-7Nb discs were treated by hydrofluoric acid etch and anodic oxidation, and polished pure Ti discs and Ti-6Al-7Nb discs without surface modification served as controls (n=35 in each group). Scanning electron microscopy, atomic force microscopy, and radiographic photoelectron spectroscopy assays were used to detect the properties of the samples' surface. The morphology, adhesion, proliferation, and alkaline phosphatase activity of BMSC were examined using various techniques of microscopic and biological characterisation. The results showed that both Ti-6Al-7Nb samples and the pure Ti samples showed hierarchical micro/nanotopographies, and fluorine emerged on the surfaces of the samples after modification. The hierarchical micro/nanotopographies significantly increased the spreading, adhesion, and proliferation of BMSC and activity of alkaline phosphatase. In addition, modified samples of Ti-6Al-7Nb showed significantly higher alkaline phosphatase activity than modified pure Ti samples (p<0.05). The experiment successfully confirmed that Ti-6Al-7Nb alloy with hierarchical micro/nanotopographies treated by hydrofluoric acid etch and anodic oxidation possessed good biocompatibility, and may be a promising candidate for dental implants.[Abstract] [Full Text] [Related] [New Search]