These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synthesis of magnetic alginate hybrid beads for efficient chromium (VI) removal.
    Author: Gopalakannan V, Viswanathan N.
    Journal: Int J Biol Macromol; 2015 Jan; 72():862-7. PubMed ID: 25256552.
    Abstract:
    Recently magnetic bio-composites have attracted the attention of scientists because of their unique characteristics like selectivity and high sorption capacity. In the present study, Fe3O4@Alg-Ce magnetic composite beads were developed by incorporating Fe3O4 particles onto alginate (Alg) biopolymer followed by cross-linking with Ce(3+) ions. The synthesized magnetic beads were characterized using FTIR and SEM with EDAX analysis and utilized for chromium (VI) removal in batch mode. A comparative adsorption performance of Fe3O4 particles, calcium alginate (CaAlg) composite and Fe3O4@Alg-Ce magnetic hybrid beads was made. The magnetic alginate beads possess an enhanced SC of 14.29 mg/g than CaAlg composite and Fe3O4 particles which possess SC of 9.45 and 9.72 mg/g respectively. The various sorption influencing parameters like contact time, pH, challenger anions, initial chromium concentration and temperature were optimized. The adsorption process was explained using Freundlich and Langmuir isotherms. The sorption kinetics was fitted well with the pseudo second order and intra particle diffusion model. The calculated thermodynamic parameters indicate the nature of chromium sorption is spontaneous and endothermic.
    [Abstract] [Full Text] [Related] [New Search]