These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ingestive and locomotor behaviours induced by pharmacological manipulation of <Alpha>-adrenoceptors into the median raphe nucleus. Author: Levone BR, Cella EC, Kochenborger L, da Silva ES, Taschetto AP, Mansur SS, Terenzi MG, Faria MS, Paschoalini MA. Journal: Neuropharmacology; 2015 Feb; 89():136-45. PubMed ID: 25261784. Abstract: The present study evaluated the involvement of α-adrenoceptors of the median raphe nucleus (MRN) in satiated rats, in food and water intake and motor behaviour. Control groups were treated with saline (SAL) or adrenaline (ADR), injected into the MRN seven minutes after injection of the vehicle used to solubilize the antagonists, propylene glycol (PLG) or SAL. Experimental groups were treated with an α-adrenoceptor antagonist, prazosin (α1, 20 or 40 nmol) or yohimbine (α2, 20 or 40 nmol) or phentolamine (non-selective α, 20 or 40 nmol), followed (later) by injection of ADR or SAL. Behaviour was recorded for 30 min. The injection of ADR and the blockade of α1 receptors resulted in hyperphagia whereas blocking α2 or α1 and α2 simultaneously did not change feeding behaviour. Pre-treatment with prazosin, followed by injection of ADR was not able to cause an increase in the amount of food ingested, while the higher dose of the α1 antagonist reduced the latency to start feeding. Pre-treatment with prazosin also caused hyperactivity. However, pre-treatment with phentolamine or yohimbine was able to block ADR-induced feeding. The present study supports the hypothesis that there is a tonic activation of α1-adrenoceptors in the MRN in satiated rats, which activates an inhibitory influence in areas that control food intake. Injection of ADR seems to activate α2 receptors, resulting in a decrease in the availability of endogenous catecholamines, which reduces the release of the signal that inhibits food intake, leading to hyperphagia.[Abstract] [Full Text] [Related] [New Search]