These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of sodium, lithium, and magnesium on in vitro binding of [3H]SCH23390 in rat neostriatum and cerebral cortex. Author: Gottberg E, Diop L, Montreuil B, Reader TA. Journal: Neurochem Res; 1989 May; 14(5):419-26. PubMed ID: 2526301. Abstract: The effects of sodium, lithium, and magnesium on the in vitro binding properties of the D1 antagonist [3H]SCH23390 were examined with membrane preparations from rat neostriatum (CPU; caudate-putamen) and cerebral cortex (CTX). The saturation binding isotherms for both tissues performed in the presence of 120 mM of either Na+ or Li+ revealed an increase in the affinity, as compared to that observed when the incubation buffer was composed of Tris-Cl 50 mM with MgCl2 1 mM alone. For the CPU there were no changes in the maximum binding capacity (Bmax) in the different buffers used. In the case of the CTX, there was a loss of [3H]SCH23390 binding sites when either Na+ or Li+ 120 mM were added to the incubations, suggesting a lack of selectivity of this ligand in the absence of group IA cations. The agonist state of the [3H]SCH23390 binding site was studied in competition experiments with dopamine. The highest agonist affinity was obtained in 50 mM Tris-Cl buffer with 1 mM MgCl2 while the addition of 120 mM of either Na+ or Li+ caused a 3- to 5-fold decrease in the potency of dopamine to compete with specific [3H]SCH23390 binding in both CPU and CTX. The presence of magnesium was essential for the competition experiments; i.e.: a concentration of 1 mM MgCl2 was optimum to obtain dopamine antagonism of ligand binding, while increasing Mg2+ to 2 or 5 mM did not appear to further improve the inhibitions. The results support both agonist and antagonist affinity shifts for the dopamine D1 receptor labeled with [3H]SCH23390.(ABSTRACT TRUNCATED AT 250 WORDS)[Abstract] [Full Text] [Related] [New Search]