These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The collagen triple helix repeat containing 1 facilitates hepatitis B virus-associated hepatocellular carcinoma progression by regulating multiple cellular factors and signal cascades.
    Author: Zhang R, Cao Y, Bai L, Zhu C, Li R, He H, Liu Y, Wu K, Liu F, Wu J.
    Journal: Mol Carcinog; 2015 Dec; 54(12):1554-66. PubMed ID: 25263696.
    Abstract:
    Hepatitis B virus (HBV) infection is one of the major causes of acute and chronic liver diseases, fulminant hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). HCC accounts for more than 85% of primary liver cancers and is the seventh most common cancer and the third leading cause of cancer-related deaths. However, the mechanism by which HBV induces HCC is largely unknown. Collagen triple helixes repeat containing 1 (CTHRC1) is a secreted protein and has characteristics of a circulating hormone with potentially broad implications for cell metabolism and physiology. CTHRC1 is associated with human cancers, but its effect on HCC is unknown. Here, we revealed that CTHRC1 expression is highly correlated with HCC progression in HBV-infected patients, and demonstrated that HBV stimulates CTHRC1 expression by activating nuclear factor-kappa B (NF-κB) and cAMP response element binding protein (CREB), through extracellular signal-regulated kinase/c-Jun N-terminal kinase (ERK/c-JNK) pathway. In addition, CTHRC1 activates hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF) through regulating phosphoinosmde-3-kinase/protein kinase B/mammalian target of rapamycin (PI-3K/AKT/mTOR) pathway. More interestingly, CTHRC1 enhances colony formation, migration, and invasion of hepatoma cells by regulating p53 and stimulating matrix metalloproteinase-9 (MMP-9) expression. In addition, knock-down of CTHRC1 results in the repression of HBV-associated carcinogenesis in nude mice. Thus, we revealed a novel mechanism by which HBV facilitates HCC development through activating the oncoprotein CTHRC1, which in turn enhances HBV-related HCC progression by stimulates colony formation, migration, and invasion of hepatoma cells through regulating multiple cellular factors and signal cascades.
    [Abstract] [Full Text] [Related] [New Search]