These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nitrogen-doped mesoporous graphene as a synergistic electrocatalyst matrix for high-performance oxygen reduction reaction.
    Author: Xiao J, Bian X, Liao L, Zhang S, Ji C, Liu B.
    Journal: ACS Appl Mater Interfaces; 2014 Oct 22; 6(20):17654-60. PubMed ID: 25264608.
    Abstract:
    To balance the anchoring sites and conductivity of the catalyst supports is a dilemma in electrocatalytic oxygen reduction reaction (ORR). Nitrogen-doped mesoporous graphene (N-MG) with large surface area, high porosity, and superior intrinsic conductivity has been developed to address this issue. Using N-MG as the backbone, a hybrid catalyst of Co3O4 nanocrystals embedded on N-MG (Co3O4/N-MG) was prepared for the electrocatalytic ORR in alkaline media. The Co3O4/N-MG showed high catalytic activity for the four-electron ORR, giving a more positive onset potential (0.93 V vs RHE) and a higher current density. The unique property of N-MG and the synergetic effect of Co3O4 and N-MG are prominent for ORR. With improved electrocatalytic activity and durability, the Co3O4/N-MG can be an efficient nonprecious metal catalyst and potentially used to substitute the platinum-based cathode catalysts in fuel cells and metal-air batteries.
    [Abstract] [Full Text] [Related] [New Search]