These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: High-frequency nanometre-scale vibration in 'quiescent' flagellar axonemes.
    Author: Kamimura S, Kamiya R.
    Journal: Nature; 1989 Aug 10; 340(6233):476-8. PubMed ID: 2526926.
    Abstract:
    The movement of cilia and flagella is based on the interaction between dynein arms and microtubules coupled with ATP hydrolysis. Although it is established that dynein arms cause adjacent microtubules to slide, little is known about the elementary process underlying the force production. To look more closely at the mechano-chemical conversion mechanism, we recently developed an optical method for measuring a nanometre-scale displacement with a time-resolution better than 1 ms. We now report the detection of high frequency (approximately 300 Hz) vibration of sub-nanometre amplitude in non-beating flagellar axonemes. This vibration could reflect the movement of individual activated dynein arms.
    [Abstract] [Full Text] [Related] [New Search]