These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Preparation, characteristics and assessment of a novel gelatin-chitosan sponge scaffold as skin tissue engineering material.
    Author: Han F, Dong Y, Su Z, Yin R, Song A, Li S.
    Journal: Int J Pharm; 2014 Dec 10; 476(1-2):124-33. PubMed ID: 25275938.
    Abstract:
    In order to develop a skin tissue engineering material for wound dressing application, a novel gelatin-chitosan sponge scaffold was designed and studied. The effect of chitosan and gelatin ratio on the morphology, pore size, porosity, water uptake capacity, water retention capacity and the degradation behavior were evaluated. Biocompatibility was investigated by both MTT method and AO/EB staining method. Antibacterial assessment and in vivo pharmacodynamic was also studied to evaluate the potential for wound healing. Results showed the sponge scaffold have uniform porous structure with pore size range between 120 and 140 μm, high porosity (>90%), high water uptake capacity (>1500%), high water retention capacity (>400%), and degradation percent in 28 days between 38.3 and 53.9%. Biocompatibility results showed that the activity of cells could not be affected by the nature of the sponge and it was suitable for cell adhesion and proliferation for 21 days. In vivo evaluation indicated that the sponge scaffold could offer effective support and attachment to cells for skin wound healing. In conclusion, the developed sponge scaffold was a potential skin tissue engineering material with appropriate physical properties and good biocompatibility.
    [Abstract] [Full Text] [Related] [New Search]