These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sodium iodate influences the apoptosis, proliferation and differentiation potential of radial glial cells in vitro. Author: Chen X, Li Q, Xu H, Yin ZQ. Journal: Cell Physiol Biochem; 2014; 34(4):1109-24. PubMed ID: 25277056. Abstract: BACKGROUND/AIMS: Sodium iodate (NaIO3)-induced acute retinal injury is typically used as an animal model for degenerative retinal disease; however, how NaIO3 influences the apoptosis, proliferation and differentiation of endogenous retinal stem cells is unknown. METHODS: We exposed a radial glial cells (RGCs) line (L2.3) to different NaIO3 concentrations and determined the influence of NaIO3 on apoptosis, proliferation, and differentiation using flow cytometry and immunofluorescence assays. We used a real-time polymerase chain reaction assay to analyze the levels of mRNAs encoding GSK-3β, AXIN2, β-catenin, TGF-β1, SMAD2, SMAD3, NOG (Noggin), and BMP4. RESULTS: Cell density decreased dramatically as a function of the NaIO3 dose. NaIO3 increased apoptosis, inhibited mitosis, proliferation, and the Wnt/β-catenin pathway. CHIR99021 (Wnt agonist) treatment efficiently reversed the effects of NaIO3 on the apoptosis and proliferation of RGCs. The number of neuronal class III β-tubulin-positive cells decreased markedly, whereas that of glial fibrillary acidic protein-positive cells increased significantly when RGCs were exposed to NaIO3. During differentiation, the Nog mRNA level decreased and transforming growth factor-β1 (Tgf-β1) and Smad2/3 mRNA levels increased significantly when RGCs were exposed to NaIO3. CONCLUSION: NaIO3 increased apoptosis, influenced the proliferation of RGCs and drove them toward astrocytic differentiation, likely through inhibition of the Wnt/β-catenin and noggin pathways and activation of the TGF-β1/SMAD2/3 pathway.[Abstract] [Full Text] [Related] [New Search]