These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Myocardial interstitial serotonin and its major metabolite, 5-hydroxyindole acetic acid levels determined by microdialysis technique in rat heart. Author: Du CK, Zhan DY, Akiyama T, Sonobe T, Inagaki T, Shirai M. Journal: Life Sci; 2014 Nov 04; 117(1):33-9. PubMed ID: 25277944. Abstract: AIMS: The aim of this study was to elucidate myocardial interstitial serotonin (5-HT) kinetics in the heart, including 5-HT reuptake and enzymatic degradation to 5-hydroxyindole acetic acid (5-HIAA) via monoamine oxidase (MAO). MAIN METHODS: Using microdialysis technique in anesthetized rats, we simultaneously monitored myocardial interstitial levels of 5-HT and its major metabolite, 5-HIAA, in the left ventricle and examined the effects of local administration of a MAO inhibitor, pargyline, or a 5-HT uptake inhibitor, fluoxetine. KEY FINDINGS: Pargyline increased dialysate 5-HT concentration from 1.8±0.3 at baseline to 3.9±0.5nM but decreased dialysate 5-HIAA concentration from 20.7±1.0 at baseline to 15.8±1.4nM at 60-80min of administration. Fluoxetine increased dialysate 5-HT concentration from 1.9±0.4 at baseline to 6.5±0.9nM at 60-80min of administration, but did not change dialysate 5-HIAA concentration. Local administration of ADP (100mM) increased dialysate 5-HT and 5-HIAA concentrations. Pargyline did not affect ADP-induced increase in dialysate 5-HT concentration but suppressed ADP-induced increase in dialysate 5-HIAA concentration during 60min of ADP administration. Fluoxetine increased dialysate 5-HT concentration at 40-60min of ADP administration, but did not affect ADP-induced increase in dialysate 5-HIAA concentration. SIGNIFICANCE: Simultaneous monitoring of myocardial interstitial 5-HT and 5-HIAA levels provides valuable information on 5-HT kinetics including reuptake and enzymatic degradation by MAO, which play a role in the regulation of myocardial interstitial 5-HT levels at baseline and when 5-HT levels are elevated.[Abstract] [Full Text] [Related] [New Search]