These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fast determination of 40 drugs in water using large volume direct injection liquid chromatography-tandem mass spectrometry.
    Author: Boix C, Ibáñez M, Sancho JV, Rambla J, Aranda JL, Ballester S, Hernández F.
    Journal: Talanta; 2015 Jan; 131():719-27. PubMed ID: 25281164.
    Abstract:
    This work describes a rapid analytical method based on direct sample injection of water samples for the simultaneous identification/quantification of 40 emerging compounds, including pharmaceuticals and drugs of abuse. The water samples were analyzed by ultra-high-performance liquid chromatography coupled to hybrid triple quadrupole mass spectrometer (UHPLC-MS/MS QqQ). Taking profit of the increasing sensitivity of nowadays tandem mass spectrometers, direct sample injection of large volumes has been an attractive alternative to pre-concentration steps. In this work, the developed methodology has been validated at three concentration levels (10, 100 and 1000 ng/L) in 10 different water samples of different types (5 effluent wastewater and 5 surface water samples). The majority of compounds could be satisfactory validated at these concentrations, showing good recoveries and precision. With only few exceptions, the limits of quantification (LOQs), estimated from the sample chromatogram at lowest spiked level tested, were below 3 ng/L. The method was applied to the analysis of 10 effluent wastewater and 10 surface water samples. Venlafaxine was the compound most frequently detected (80%) in surface water, followed by acetaminophen (70%). Regarding effluent wastewater, valsartan and 4-acetyl aminoantipyrine were detected in 9 out of 10 samples analyzed. These two compounds together with 4-formyl aminoantipyrine and naproxen showed the highest concentrations (>2000 ng/L). In these cases, a dilution step was required for a correct quantification. As an additional evaluation of the method performance, the same water samples were analyzed in another laboratory by a second analytical methodology, based on on-line solid-phase-extraction coupled to LC-MS/MS (QqQ).
    [Abstract] [Full Text] [Related] [New Search]