These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of monoclonal antibodies on the properties of smooth muscle myosin. Author: Ito M, Pierce PR, Allen RE, Hartshorne DJ. Journal: Biochemistry; 1989 Jun 27; 28(13):5567-72. PubMed ID: 2528373. Abstract: Monoclonal antibodies were generated against turkey gizzard myosin, and their effects on some of the properties of myosin were assayed. Ca2+- and Mg2+-ATPase activities of myosin were enhanced by the anti-subfragment 2 antibodies at low ionic strength (i.e., with 10S myosin). Tryptic fragments of an anti-S2 IgM also activated these activities. Antibodies directed against subfragment 1 and light meromyosin had no effect. The Mg2+-ATPase activity of heavy meromyosin also was activated by an anti-S2 antibody. Actin-activated ATPase activity of phosphorylated myosin was enhanced by the anti-S2 IgM fragments at low MgCl2 concentrations. This increase was reflected by a 5-fold increase in Vmax and a slight decrease in the apparent dissociation constant for actin. The actin-activated ATPase of dephosphorylated myosin was not affected by intact anti-S2 antibody or its fragments. The rates of phosphorylation and dephosphorylation of the 20,000-dalton light chains were increased by interaction of myosin with anti-S2 antibody. Limited proteolysis of myosin was used as a conformational probe. Interaction of anti-S2 antibody with 10S myosin increased the extent of cleavage at the S1-S2 junction. Proteolysis of 6S myosin was rapid and was not influenced by anti-S2 antibody. Our interpretation of these results is that interaction of the anti-S2 antibodies with myosin alters the conformation in the S2 region and this in turn modifies some of the properties of myosin. This is consistent with the hypothesis that the S2 region of smooth muscle myosin is a determinant of its biological properties.[Abstract] [Full Text] [Related] [New Search]