These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Solution-processable LaZrOx/SiO2 gate dielectric at low temperature of 180 °C for high-performance metal oxide field-effect transistors.
    Author: Je SY, Son BG, Kim HG, Park MY, Do LM, Choi R, Jeong JK.
    Journal: ACS Appl Mater Interfaces; 2014 Nov 12; 6(21):18693-703. PubMed ID: 25285585.
    Abstract:
    Although solution-processable high-k inorganic dielectrics have been implemented as a gate insulator for high-performance, low-cost transition metal oxide field-effect transistors (FETs), the high-temperature annealing (>300 °C) required to achieve acceptable insulating properties still limits the facile realization of flexible electronics. This study reports that the addition of a 2-dimetylamino-1-propanol (DMAPO) catalyst to a perhydropolysilazane (PHPS) solution enables a significant reduction of the curing temperature for the resulting SiO2 dielectrics to as low as 180 °C. The hydrolysis and condensation of the as-spun PHPS film under humidity conditions were enhanced greatly by the presence of DMAPO, even at extremely low curing temperatures, which allowed a smooth surface (roughness of 0.31 nm) and acceptable leakage characteristics (1.8 × 10(-6) A/cm(2) at an electric field of 1MV/cm) of the resulting SiO2 dielectric films. Although the resulting indium zinc oxide (IZO) FETs exhibited an apparent high mobility of 261.6 cm(2)/(V s), they suffered from a low on/off current (ION/OFF) ratio and large hysteresis due to the hygroscopic property of silazane-derived SiO2 film. The ION/OFF value and hysteresis instability of IZO FETs was improved by capping the high-k LaZrOx dielectric on a solution-processed SiO2 film via sol-gel processing at a low temperature of 180 °C while maintaining a high mobility of 24.8 cm(2)/(V s). This superior performance of the IZO FETs with a spin-coated LaZrOx/SiO2 bilayer gate insulator can be attributed to the efficient intercalation of the 5s orbital of In(3+) ion in the IZO channel, the good interface matching of IZO/LaZrOx and the carrier blocking ability of PHPS-derived SiO2 dielectric film. Therefore, the solution-processable LaZrOx/SiO2 stack can be a promising candidate as a gate dielectric for low-temperature, high-performance, and low-cost flexible metal oxide FETs.
    [Abstract] [Full Text] [Related] [New Search]