These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Human α1-adrenoceptor subtype selectivity of substituted homobivalent 4-aminoquinolines. Author: Chen J, Campbell AP, Urmi KF, Wakelin LP, Denny WA, Griffith R, Finch AM. Journal: Bioorg Med Chem; 2014 Nov 01; 22(21):5910-6. PubMed ID: 25288493. Abstract: A series of ring-substituted ethyl- and heptyl-linked 4-aminoquinoline dimers were synthesized and evaluated for their affinities at the 3 human α(1)-adrenoceptor (α(1)-AR) subtypes and the human serotonin 5-HT(1A)-receptor (5-HT(1A)-R). We find that the structure-specificity profiles are different for the two series at the α(1)-AR subtypes, which suggests that homobivalent 4-aminoquinolines can be developed with α(1)-AR subtype selectivity. The 8-methyl (8-Me) ethyl-linked analogue has the highest affinity for the α(1A)-AR, 7 nM, and the greatest capacity for discriminating between α(1A)-AR and α(1B)-AR (6-fold), α(1D)-AR (68-fold), and the 5-HT(1A)-R (168-fold). α(1B)-AR selectivity was observed with the 6-methyl (6-Me) derivative of the ethyl- and heptyl-linked 4-aminoquinoline dimers and the 7-methoxy (7-OMe) derivative of the heptyl-linked analogue. These substitutions result in 4- to 80-fold selectivity for α(1B)-AR over α(1A)-AR, α(1D)-AR, and 5-HT(1A)-R. In contrast, 4-aminoquinoline dimers with selectivity for α(1D)-AR are more elusive, since none studied to date has greater affinity for the α(1D)-AR over the other two α(1)-ARs. The selectivity of the 8-Me ethyl-linked 4-aminoquinoline dimer for the α(1A)-AR, and 6-Me ethyl-linked, and the 6-Me and 7-OMe heptyl-linked 4-aminoquinoline dimers for the α(1B)-AR, makes them promising leads for drug development of α(1A)-AR or α(1B)-AR subtype selective ligands with reduced 5-HT(1A)-R affinity.[Abstract] [Full Text] [Related] [New Search]