These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Unregulated emissions from diesel engine with particulate filter using Fe-based fuel borne catalyst.
    Author: Zhao H, Ge Y, Zhang T, Zhang J, Tan J, Zhang H.
    Journal: J Environ Sci (China); 2014 Oct 01; 26(10):2027-33. PubMed ID: 25288546.
    Abstract:
    The alteration and formation of toxic compounds and potential changes in the toxicity of emissions when using after-treatment technologies have gained wide attention. Volatile organic compound (VOC), carbonyl compound and particle-phase polycyclic aromatic hydrocarbon (PAH) emissions were tested at European Steady State Cycle (ESC) to study unregulated emissions from a diesel engine with a fuel-borne catalyst and diesel particulate filter (FBC-DPF). An Fe-based fuel-borne catalyst was used for this study. According to the results, brake specific emissions of total VOCs without and with DPF were 4.7 and 4.9mg/kWh, respectively, showing a 4.3% increase. Benzene and n-undecane emissions increased and toluene emission decreased, while other individual VOC emissions basically had no change. When retrofitted with the FBC-DPF, total carbonyl compound emission decreased 15.7%, from 25.8 to 21.8mg/kWh. The two highest carbonyls, formaldehyde and acetaldehyde, were reduced from 20.0 and 3.7 to 16.5 and 3.3mg/kWh respectively. The specific reactivity (SR) with DPF was reduced from 6.68 to 6.64mg/kWh. Total particle-phase PAH emissions decreased 66.4% with DPF compared to that without DPF. However, the Benzo[a]pyrene equivalent (BaPeq) with DPF had increased from 0.016 to 0.030mg/kWh. Fluoranthene and Pyrene had the greatest decrease, 91.1% and 88.4% respectively. The increase of two- and three-ring PAHs with DPF indicates that the fuel-borne catalyst caused some gas-phase PAHs to adsorb on particles. The results of this study expand the knowledge of the effects of using a particulate filter and a Fe-based fuel-borne catalyst on diesel engine unregulated emissions.
    [Abstract] [Full Text] [Related] [New Search]