These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Formation, isomerization, and dissociation of ε- and α-carbon-centered tyrosylglycylglycine radical cations. Author: Lai CK, Mu X, Hao Q, Hopkinson AC, Chu IK. Journal: Phys Chem Chem Phys; 2014 Nov 28; 16(44):24235-43. PubMed ID: 25293584. Abstract: The fragmentation products of the ε-carbon-centered radical cations [Y(ε)˙LG](+) and [Y(ε)˙GL](+), made by 266 nm laser photolysis of protonated 3-iodotyrosine-containing peptides, are substantially different from those of their π-centered isomers [Y(π)˙LG](+) and [Y(π)˙GL](+), made by dissociative electron transfer from ternary metal-ligand-peptide complexes. For leucine-containing peptides the major pathway for the ε-carbon-centered radical cations is loss of the side chain of the leucine residue forming [YG(α)˙G](+) and [YGG(α)˙](+), whereas for the π-radicals it is the side chain of the tyrosine residue that is lost, giving [G(α)˙LG](+) and [G(α)˙GL](+). The fragmentations of the product ions [YG(α)˙G](+) and [YGG(α)˙](+) are compared with those of the isomeric [Y(ε)˙GG](+) and [Y(π)˙GG](+) ions. The collision-induced spectra of ions [Y(ε)˙GG](+) and [YGG(α)˙](+) are identical, showing that interconversion occurs prior to dissociation. For ions [Y(ε)˙GG](+), [Y(π)˙GG](+) and [YG(α)˙G](+) the dissociation products are all distinctly different, indicating that dissociation occurs more readily than isomerization. Density functional theory calculations at B3LYP/6-31++G(d,p) gave the relative enthalpies (in kcal mol(-1) at 0 K) of the five isomers to be [Y(ε)˙GG](+) 0, [Y(π)˙GG](+) -23.7, [YGG(α)˙](+) -28.7, [YG(α)˙G](+) -31.0 and [Y(α)˙GG](+) -38.5. Migration of an α-C-H atom from the terminal glycine residue to the ε-carbon-centered radical in the tyrosine residue, a 1-11 hydrogen atom shift, has a low barrier, 15.5 kcal mol(-1) above [Y(ε)˙GG](+). By comparison, isomerization of [Y(ε)˙GG](+) to [YG(α)˙G](+) by a 1-8 hydrogen atom migration from the α-C-H atom of the central glycine residue has a much higher barrier (50.6 kcal mol(-1)); similarly conversion of [Y(ε)˙GG](+) into [Y(π)˙GG](+) has a higher energy (24.4 kcal mol(-1)).[Abstract] [Full Text] [Related] [New Search]