These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ground reaction forces and lower-limb joint kinetics of turning gait in typically developing children. Author: Dixon PC, Stebbins J, Theologis T, Zavatsky AB. Journal: J Biomech; 2014 Nov 28; 47(15):3726-33. PubMed ID: 25311452. Abstract: Turning is a common locomotor task essential to daily activity; however, very little is known about the forces and moments responsible for the kinematic adaptations occurring relative to straight-line gait in typically developing children. Thus, the aims of this study were to analyse ground reaction forces (GRFs), ground reaction free vertical torque (TZ), and the lower-limb joint kinetics of 90° outside (step) and inside (spin) limb turns. Step, spin, and straight walking trials from fifty-four typically developing children were analysed. All children were fit with the Plug-in Gait and Oxford Foot Model marker sets while walking over force plates embedded in the walkway. Net internal joint moments and power were computed via a standard inverse dynamics approach. All dependent variables were statistically analysed over the entire curves using the mean difference 95% bootstrap confidence band approach. GRFs were directed medially for step turns and laterally for spin turns during the turning phase. Directions were reversed and magnitudes decreased during the approach phase. Step turns showed reduced ankle power generation, while spin turns showed large TZ. Both strategies required large knee and hip coronal and transverse plane moments during swing. These kinetic differences highlight adaptations required to maintain stability and reorient the body towards the new walking direction during turning. From a clinical perspective, turning gait may better reveal weaknesses and motor control deficits than straight walking in pathological populations, such as children with cerebral palsy, and could potentially be implemented in standard gait analysis sessions.[Abstract] [Full Text] [Related] [New Search]