These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Temperature rise caused in the pulp chamber under simulated intrapulpal microcirculation with different light-curing modes. Author: Ramoglu SI, Karamehmetoglu H, Sari T, Usumez S. Journal: Angle Orthod; 2015 May; 85(3):381-5. PubMed ID: 25317750. Abstract: OBJECTIVE: To evaluate and compare intrapulpal temperature rise with three different light-curing units by using a study model simulating pulpal blood microcirculation. MATERIALS AND METHODS: The roots of 10 extracted intact maxillary central incisors were separated approximately 2 mm below the cement-enamel junction. The crowns of these teeth were fixed on an apparatus for the simulation of blood microcirculation in pulp. A J-type thermocouple wire was inserted into the pulp chamber through a drilled access on the palatal surfaces of the teeth. Four measurements were made using each tooth for four different modes: group 1, 1000 mW/cm(2) for 15 seconds; group 2, 1200 mW/cm(2) for 10 seconds; group 3, 1400 mW/cm(2) for 8 seconds; and group 4, 3200 mW/cm(2) for 3 seconds. The tip of the light source was positioned at 2 mm to the incisor's labial surface. RESULTS: The highest temperature rise was recorded in group 1 (2.6°C ± 0.54°C), followed by group 2 (2.57°C ± 0.62°C) and group 3 (2.35°C ± 0.61°C). The lowest temperature rise value was found in group 4 (1.74°C ± 0.52°C); this value represented significantly lower ΔT values when compared to group 1 and group 2 (P = .01 and P = .013, respectively). CONCLUSIONS: The lowest intrapulpal temperature rise was induced by 3200 mW/cm(2) for 3 seconds of irradiation. Despite the significant differences among the groups, the temperature increases recorded for all groups were below the critical value of 5.6°C.[Abstract] [Full Text] [Related] [New Search]