These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of mineral and rapeseed phosphorus supplementation on phytate degradation in dairy cows.
    Author: Haese E, Müller K, Steingass H, Schollenberger M, Rodehutscord M.
    Journal: Arch Anim Nutr; 2014 Dec; 68(6):478-91. PubMed ID: 25319492.
    Abstract:
    The objective of this study was to evaluate the effects of diet composition on phytate (InsP6) degradation in dairy cows. In Experiment 1, four diets that differed in the amount and source of phosphorus (P) were fed to 24 lactating cows in a 4 × 4 Latin Square design. The control diet (Diet C) contained 4.18 g P/kg dry matter (DM). Diet MP contained additional mineral P (5.11 g P/kg DM), Diet RS contained rapeseed and rapeseed meal as organic P sources (5.26 g P/kg DM) and Diet RSM contained rapeseed meal and rapeseed oil (5.04 g P/kg DM). Total P (tP) and InsP6 excretion in faeces were measured. In Experiment 2, we used a rumen simulation technique (Rusitec) to estimate ruminal disappearance of tP and InsP6 from Diets C, MP and RSM. In Experiment 1, tP concentration in faeces increased with tP intake and was highest for Diets RS and RSM. The source of supplemented P had no influence on tP digestibility, but tP digestibility was reduced for Diets MP, RS and RSM in comparison to that for Diet C. InsP6 disappearance decreased in Diet MP (85.0%) and increased in Diets RS (92.7%) and RSM (94.0%) compared to that in Diet C (90.0%). In Experiment 2, P source influenced ruminal tP disappearance (Diet MP, 78.6%; Diet RSM, 75.3%). InsP6 disappearance for Diet C (98.1%) was higher than that for Diets MP (95.6%) and RSM (94.9%). The results confirmed the high potential of ruminants to degrade InsP6, but differences in diet composition influenced InsP6 disappearance. Further studies of the site of InsP6 degradation are required to understand the relevance of InsP6 degradation for the absorption of P.
    [Abstract] [Full Text] [Related] [New Search]