These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Lipid Profile and Electrolyte Composition in Diabetic Rats Treated With Leaf Extract of Musa sapientum.
    Author: Adewoye EO, Ige AO.
    Journal: J Diet Suppl; 2016; 13(1):106-17. PubMed ID: 25320868.
    Abstract:
    Diabetes mellitus affects lipid levels resulting in diabetic dyslipidemia as well as electrolyte loss from the body. Musa sapientum has been reported to possess antidiabetic properties. This study assessed the lipid profile and electrolyte composition in alloxan-induced diabetic rats treated with methanol leaf extract of M. sapientum (cMEMSL). Diabetes was induced with alloxan (120 mg/kg i.p.). Seventy-five male albino rats were divided into 5 groups of 15 rats each. Group 1 was control; groups 2-5 were made diabetic and treated with 0.2 ml 0.9% NaCl, cMEMSL (250 mg/kg and 500 mg/kg), and glibenclamide (5 mg/kg), respectively, for 14 days. Blood samples were obtained from the retro orbital sinus after light anesthesia from 5 animals in each group on days 2, 7, and 14 for lipids and electrolyte analysis. Lipid profile of diabetic treated (cMEMSL and glibenclamide) animals showed significant reduction (p < .05) in total cholesterol, triglyceride, and low density lipoprotein (LDL) levels. The high density lipoprotein (HDL) level in the treatment groups increased significantly (p < .05) compared with diabetic untreated. Sodium, potassium, and phosphate ions significantly increased in all diabetic treatment groups while chloride ion significantly decreased compared with diabetic untreated. There was no significant difference in calcium and bicarbonate ion concentration in all the groups. This study has showed additional properties of Musa sapientum to include its ability to restore electrolyte balance, reduce cholesterol, triglyceride, LDL, and increase the HDL levels in diabetic animals.
    [Abstract] [Full Text] [Related] [New Search]