These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ipsative imputation for a 15-item Geriatric Depression Scale in community-dwelling elderly people. Author: Imai H, Furukawa TA, Kasahara Y, Ishimoto Y, Kimura Y, Fukutomi E, Chen WL, Tanaka M, Sakamoto R, Wada T, Fujisawa M, Okumiya K, Matsubayashi K. Journal: Psychogeriatrics; 2014 Sep; 14(3):182-7. PubMed ID: 25323959. Abstract: BACKGROUND: Missing data are inevitable in almost all medical studies. Imputation methods using the probabilistic model are common, but they cannot impute individual data and require special software. In contrast, the ipsative imputation method, which substitutes the missing items by the mean of the remaining items within the individual, is easy and does not need any special software, but it can provide individual scores. The aim of the present study was to evaluate the validity of the ipsative imputation method using data involving the 15-item Geriatric Depression Scale. METHODS: Participants were community-dwelling elderly individuals (n = 1178). A structural equation model was constructed. The model fit indexes were calculated to assess the validity of the imputation method when it is used for individuals who were missing 20% of data or less and 40% of data or less, depending on whether we assumed that their correlation coefficients were the same as the dataset with no missing items. Finally, we compared path coefficients of the dataset imputed by ipsative imputation with those by multiple imputation. RESULTS: When compared with the assumption that the datasets differed, all of the model fit indexes were better under the assumption that the dataset without missing data is the same as that that was missing 20% of data or less. However, by the same assumption, the model fit indexes were worse in the dataset that was missing 40% of data or less. The path coefficients of the dataset imputed by ipsative imputation and by multiple imputation were compatible with each other if the proportion of missing items was 20% or less. CONCLUSION: Ipsative imputation appears to be a valid imputation method and can be used to impute data in studies using the 15-item Geriatric Depression Scale, if the percentage of its missing items is 20% or less.[Abstract] [Full Text] [Related] [New Search]