These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Increasing efficiency in protein-protein coupling: subunit-directed acetylation and phase-directed CuAAC ("click coupling") in the formation of hemoglobin bis-tetramers.
    Author: Wang A, Kluger R.
    Journal: Biochemistry; 2014 Nov 04; 53(43):6793-9. PubMed ID: 25325574.
    Abstract:
    Cross-linked human hemoglobins have been evaluated for clinical use as circulating oxygen carriers. However, their induction of vasoactivity was sufficiently problematic to lead to the cessation of clinical trials. The source of vasoactivity is likely to be endothelial extravasation causing the scavenging of endogenous nitric oxide. It was recently shown that species that consist of two coupled hemoglobin tetramers do not evoke vasoactivity in a sensitive murine model. Presumably these materials are too large to extravasate. In order to make this class of material more readily available, there is a need for improved methods that can form a cross-linked bis-tetramer without producing smaller species at the same time. A potentially efficient route to cross-linking and coupling two Hb tetramers is through phase-directed copper-catalyzed azide alkyne cycloaddition (PDCuAAC). However, introduction of the necessary azide-containing cross-link gives mixtures of tetrameric and bis-tetrameric proteins, as the PDCuAAC process appears to be limited to only those proteins where the cross-link containing the azide is exclusively within the β-subunits. In order to block formation of the azide cross-link within the α-subunits, subunit-specific introduction of the azide is necessary. This is achieved by blocking reaction at the reactive amino groups of the β-subunits in the site that binds the allosteric activator 2,3-diphosphoglycerate (DPG) with inositol hexaphosphate (IHP), permitting α-selective acetylation with acetyl 3,5-dibromosalicylate. After removal of IHP, reaction with an anionic cross-linker containing an azide group occurs within the β-subunits. The resulting α-acetylated β-β'-cross-linked hemoglobin azide (acHb>-N3) undergoes efficient PDCuAAC with bis-alkynes to produce cross-linked bis-tetramers. Analysis of circular dichroism spectra of the modified species shows that there is little change in the structure of the globin chains as a result of the chemical modifications. The oxygenation properties are consistent with those needed for effective oxygenation in circulation, while the bis-tetrameric structure is sufficiently large to avoid extravasation and depletion of nitric oxide.
    [Abstract] [Full Text] [Related] [New Search]