These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis of single-crystalline spinel LiMn2 O4 Nanorods for lithium-ion batteries with high rate capability and long cycle life. Author: Xie X, Su D, Sun B, Zhang J, Wang C, Wang G. Journal: Chemistry; 2014 Dec 15; 20(51):17125-31. PubMed ID: 25339467. Abstract: The long-standing challenge associated with capacity fading of spinel LiMn2 O4 cathode material for lithium-ion batteries is investigated. Single-crystalline spinel LiMn2 O4 nanorods were successfully synthesized by a template-engaged method. Porous Mn3 O4 nanorods were used as self-sacrificial templates, into which LiOH was infiltrated by a vacuum-assisted impregnation route. When used as cathode materials for lithium-ion batteries, the spinel LiMn2 O4 nanorods exhibited superior long cycle life owing to the one-dimensional nanorod structure, single-crystallinity, and Li-rich effect. LiMn2 O4 nanorods retained 95.6 % of the initial capacity after 1000 cycles at 3C rate. In particular, the nanorod morphology of the spinel LiMn2 O4 was well-preserved after a long-term cycling, suggesting the ultrahigh structural stability of the single crystalline spinel LiMn2 O4 nanorods. This result shows the promising applications of single-crystalline spinel LiMn2 O4 nanorods as cathode materials for lithium-ion batteries with high rate capability and long cycle life.[Abstract] [Full Text] [Related] [New Search]