These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Predictive maps for stochastic nonaffine stiffening and damage in fibrous networks. Author: Abhilash AS, Zhang L, Stiefel J, Purohit PK, Joshi SP. Journal: Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022607. PubMed ID: 25353502. Abstract: The macroscopic responses of synthetic and natural filamentous networks are determined by a combination of microstructure and filament properties. Biofilament networks such as those of actin and fibrin have become vehicles for studying important concepts in mechanics such as rigidity percolation, linearity and nonlinearity, isotropy and anisotropy, affinity and nonaffinity, hardening and softening, bending and stretching transitions, etc. In this work, we consider generic fibrous network architectures to map out their mechanical responses over a wide range of filament properties. Using the finite element method, we perform two-dimensional simulations of discrete networks subjected to shear deformation. These simulations encompass stochastic effects arising from network topology (filament arrangement, orientation, and length distribution) and the thermally activated crosslink scission. We study the mechanics of these random networks up to a strain of 10%, including damage that is induced by crosslink scission. The response is nonlinear and the initial elastic modulus alone is not sufficient to give an understanding about the overall response. We show that the nonlinear elastic response of the network can be captured using a few parameters that depend on some well known length scales in network mechanics. For networks with filament density above the rigidity percolation threshold, by increasing filament density and bending stiffness, we observe a crossover from the bending dominated elastically compliant stiffening regime to a stretching dominated rigid nonstiffening regime. We show that in the bending dominated regime there are large deviations from the predictions of affine continuum theories. We also give a simple qualitative model for describing the contours of the incubation strain which marks the onset of damage in networks.[Abstract] [Full Text] [Related] [New Search]