These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Infantile hypertrophic pyloric stenosis (IHPS): a study of its pathophysiology utilizing the newborn hph-1 mouse model of the disease. Author: Welsh C, Shifrin Y, Pan J, Belik J. Journal: Am J Physiol Gastrointest Liver Physiol; 2014 Dec 15; 307(12):G1198-206. PubMed ID: 25359537. Abstract: Infantile hypertrophic pyloric stenosis (IHPS) is a common disease of unknown etiology. The tetrahydrobiopterin (BH4)-deficient hyperphenylalaninemia-1 (hph-1) newborn mouse has a similar phenotype to the human condition. For hph-1 and wild-type control animals, pyloric tissue agonist-induced contractile properties, reactive oxygen species (ROS) generation, cGMP, neuronal nitric oxide synthase (nNOS) content, and Rho-associated protein kinase 2 (ROCK-2) expression and activity were evaluated. Primary pyloric smooth muscle cells from wild-type newborn animals were utilized to evaluate the effect of BH4 deficiency. One-week-old hph-1 mice exhibited a fourfold increase (P < 0.01) in the pyloric sphincter muscle contraction magnitude but similar relaxation values when compared with wild-type animals. The pyloric tissue nNOS expression and cGMP content were decreased, whereas the rate of nNOS uncoupling increased (P < 0.01) in 1-wk-old hph-1 mice when compared with wild-type animals. These changes were associated with increased pyloric tissue ROS generation and elevated ROCK-2 expression/activity (P < 0.05). At 1-3 days of age and during adulthood, the gastric emptying rate of the hph-1 mice was not altered, and there were no genotype differences in pyloric tissue ROS generation, nNOS expression, or ROCK-2 activity. BH4 inhibition in pyloric smooth muscle cells resulted in increased ROS generation (P < 0.01) and ROCK-2 activity (P < 0.05). Oxidative stress upregulated ROCK-2 activity in pyloric tissue, but no changes were observed in newborn fundal tissue in vitro. We conclude that ROS-induced upregulation of ROCK-2 expression accounts for the increased pyloric sphincter tone and nNOS downregulation in the newborn hph-1 mice. The role of ROCK-2 activation in the pathogenesis of IHPS warrants further study.[Abstract] [Full Text] [Related] [New Search]