These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hepatocyte growth factor ameliorates hyperglycemia and corrects β-cell mass in IRS2-deficient mice. Author: Alvarez-Perez JC, Rosa TC, Casinelli GP, Valle SR, Lakshmipathi J, Rosselot C, Rausell-Palamos F, Vasavada RC, García-Ocaña A. Journal: Mol Endocrinol; 2014 Dec; 28(12):2038-48. PubMed ID: 25361392. Abstract: Insulin resistance, when combined with decreased β-cell mass and relative insufficient insulin secretion, leads to type 2 diabetes. Mice lacking the IRS2 gene (IRS2(-/-) mice) develop diabetes due to uncompensated insulin resistance and β-cell failure. Hepatocyte growth factor (HGF) activates the phosphatidylinositol 3-kinase/Akt signaling pathway in β-cells without recruitment of IRS1 or IRS2 and increases β-cell proliferation, survival, mass, and function when overexpressed in β-cells of transgenic (TG) mice. We therefore hypothesized that HGF may protect against β-cell failure in IRS2 deficiency. For that purpose, we cross-bred TG mice overexpressing HGF in β-cells with IRS2 knockout (KO) mice. Glucose homeostasis analysis revealed significantly reduced hyperglycemia, compensatory hyperinsulinemia, and improved glucose tolerance in TG/KO mice compared with those in KO mice in the context of similar insulin resistance. HGF overexpression also increased glucose-stimulated insulin secretion in IRS2(-/-) islets. To determine whether this glucose homeostasis improvement correlated with alterations in β-cells, we measured β-cell mass, proliferation, and death in these mice. β-Cell proliferation was increased and death was decreased in TG/KO mice compared with those in KO mice. As a result, β-cell mass was significantly increased in TG/KO mice compared with that in KO mice, reaching levels similar to those in wild-type mice. Analysis of the intracellular targets involved in β-cell failure in IRS2 deficiency showed Pdx-1 up-regulation, Akt/FoxO1 phosphorylation, and p27 down-regulation in TG/KO mouse islets. Taken together, these results indicate that HGF can compensate for IRS2 deficiency and subsequent insulin resistance by normalizing β-cell mass and increasing circulating insulin. HGF may be of value as a therapeutic agent against β-cell failure.[Abstract] [Full Text] [Related] [New Search]