These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: AMP-activated protein kinase suppresses urate crystal-induced inflammation and transduces colchicine effects in macrophages.
    Author: Wang Y, Viollet B, Terkeltaub R, Liu-Bryan R.
    Journal: Ann Rheum Dis; 2016 Jan; 75(1):286-94. PubMed ID: 25362043.
    Abstract:
    OBJECTIVE: AMP-activated protein kinase (AMPK) is metabolic biosensor with anti-inflammatory activities. Gout is commonly associated with excesses in soluble urate and in nutrition, both of which suppress tissue AMPK activity. Gout is driven by macrophage-mediated inflammation transduced partly by NLRP3 inflammasome activation and interleukin (IL)-1β release. Hence, we tested the hypothesis that AMPK activation limits monosodium urate (MSU) crystal-induced inflammation. METHODS: We studied bone marrow-derived macrophages (BMDMs) from AMPKα1 knockout and wild-type mice, and assessed the selective AMPK pharmacological activator A-769662 and a low concentration (10 nM) of colchicine. We examined phosphorylation (activation) of AMPKα Thr172, NLRP3 mRNA expression, and caspase-1 cleavage and IL-1β maturation using western blot and quantitative RT-PCR approaches. We also assessed subcutaneous murine air pouch inflammatory responses to MSU crystals in vivo. RESULTS: MSU crystals suppressed phosphorylation of AMPKα in BMDMs. Knockout of AMPKα1 enhanced, and, conversely, A-769662-inhibited MSU crystal-induced inflammatory responses including IL-1β and CXCL1 release in vitro and in vivo. A-769662 promoted AMPK-dependent macrophage anti-inflammatory M2 polarisation and inhibited NLRP3 gene expression, activation of caspase-1 and IL-1β. Colchicine, at low concentration (10 nM) achieved in gout flare prophylaxis dosing, promoted phosphorylation of AMPKα and macrophage M2 polarisation, and reduced activation of caspase-1 and release of IL-1β and CXCL1 by MSU crystals in BMDMs in vitro. CONCLUSIONS: AMPK activity limits MSU crystal inflammation in vitro and in vivo, and transduces multiple anti-inflammatory effects of colchicine in macrophages. Targeting increased and sustained AMPK activation in inflammatory cells merits further investigation for enhancing efficacy of prophylaxis and treatment of gouty inflammation.
    [Abstract] [Full Text] [Related] [New Search]