These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Binding of iodinated erythropoietin to rat bone marrow cells under normal and anemic conditions. Author: Akahane K, Tojo A, Fukamachi H, Kitamura T, Saito T, Urabe A, Takaku F. Journal: Exp Hematol; 1989 Feb; 17(2):177-82. PubMed ID: 2536329. Abstract: Specific binding sites for erythropoietin (Epo) were shown in normal and anemic rat bone marrow cells using [125I]labeled human recombinant Epo. When rats were treated once or several times with phenylhydrazine or malotilate, or by phlebotomy, the serum Epo level determined by RIA began to increase rapidly. Thereafter, both the number of erythroid colony-forming unit (CFU-E)-derived colonies and the Epo binding capacity of bone marrow cells increased almost simultaneously in response to induced anemic states, suggesting that the amount of Epo binding in bone marrow cells may reflect in vivo erythropoiesis. Scatchard analysis of the binding data from normal rats revealed the presence of a single class of binding sites (Kd = 0.18 +/- 0.04 nM, 38 +/- 5 sites/cell). In anemic states, the apparent average receptor number per cell increased (52-62 sites/cell) without changing in binding affinity toward Epo. Furthermore, [125I]Epo was cross-linked to the cell surface molecule of approximately 165 kd in nonreducing conditions and 75 kd in reducing conditions. Autoradiographic analysis indicated that Epo receptors were distributed on immature erythroid cells. Proerythroblasts were the most heavily labeled, whereas orthochromatic erythroblasts and cells of myeloid and lymphoid lineages were not labeled. Calculations based on Scatchard and autoradiographic analysis showed that proerythroblasts have 390 receptor sites per cell, twice as many as basophilic or polychromatophilic erythroblasts have. These results are consistent with the stage-specific action of Epo in physiological differentiation of erythroid cells.[Abstract] [Full Text] [Related] [New Search]