These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Capillarisin Exhibits Anticancer Effects by Inducing Apoptosis, Cell Cycle Arrest and Mitochondrial Membrane Potential Loss in Osteosarcoma Cancer Cells (HOS). Author: Chen NJ, Hao FY, Liu H, Zhao H, Li JM. Journal: Drug Res (Stuttg); 2015 Aug; 65(8):422-7. PubMed ID: 25368903. Abstract: The aim of the present study was to assess the anticancer activity of capillarisin against human osteosarcoma (HOS) cancer cells in vitro. Cell viability after capillarisin drug treatment and evaluated by MTT assay. The extent of cell death induced by capillarisin was estimated by using lactate dehydrogenase (LDH) assay. The effect of capillarisin on cell cycle phase distribution and mitochondrial membrane potential (ΛΨm) was demonstrated via flow cytometry using propidium iodide (PI) and rhodamine-123 (Rh-123) DNA-binding fluorescent dyes respectively. Fluorescence microscopy was employed to examine the morphological changes in osteosarcoma cancer cells and presence of apoptotic bodies following capillarisin treatment. The results of this study revealed that capillarisin induced dose-dependent growth inhibition of these cancer cells after 12-h of incubation. Further, capillarisin induced significant release of LDH from these cell cultures and this LDH release was much more noticeable at higher concentrations of capillarisin. Hoechst 33258 staining revealed characteristic morphological features of apoptosis triggered by capillarisin treatment. Cell cycle analysis revealed that capillarisin induced dose-dependent G0/G1-phase cell cycle arrest. Capillarisin also trigerred a progressive and dose-dependent reduction in the mitochondrial membrane potential. In conclusion, capillarisin inhibits cancer cell growth of osteosarcoma cells by inducing apoptosis accompanied with G0/G1-phase cell cycle arrest and loss in mitochondrial membrane potential.[Abstract] [Full Text] [Related] [New Search]