These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Combinative ligand-receptor interactions: effects of cAMP, epinephrine, and met-enkephalin on RAW264 macrophage morphology, spreading, adherence, and microfilaments.
    Author: Petty HR, Martin SM.
    Journal: J Cell Physiol; 1989 Feb; 138(2):247-56. PubMed ID: 2537324.
    Abstract:
    Cell surface ligand-receptor interactions play a central role in the regulation and expression of macrophage function. Included among these macrophage membrane receptors are the beta-adrenergic and opioid receptors. We studied the abilities of epinephrine, met-enkephalin, forskolin, and adenosine 3':5' cyclic monophosphate (cAMP) analogues to affect macrophage morphology, spreading, and adherence. Cell spreading was quantitated by measuring the perimeters of adherent cell images recorded by videomicroscopy. Epinephrine induced a dose-dependent decrease in macrophage spreading; at 10(-5) M epinephrine the mean perimeter was 10.4 +/- 0.3 microns in comparison to 15.0 +/- 1.0 microns for controls. The inhibition of spreading can be blocked by the antagonist propranolol. On the other hand, met-enkephalin induced a dose-dependent increase in macrophage spreading, with a perimeter of 18.5 +/- 1.0 microns at 10(-8) M. Since catecholamines and opioids are simultaneously released from chromaffin cells of the adrenal, we examined the combinative effects due to treatment with both ligands. When macrophages were exposed to 10(-5) M epinephrine and 10(-8) M met-enkephalin, cell morphology and spreading were indistinguishable from that due to 10(-5) M epinephrine alone. The epinephrine dose-response curve in the presence of 10(-8) M met-enkephalin was similar to that of epinephrine alone. The beta-adrenergic receptor is apparently capable of diminishing or abrogating the opioid receptor signal(s). These combinative and epinephrine-mediated effects may be at least partially accounted for by the action of cAMP. Forskolin and the cAMP analogues N6-2'-O-dibutyryladenosine 3':5' cyclic monophosphate (dbcAMP) and 8-bromoadenosine 3':5' cyclic monophosphate (Br-cAMP) affected cell morphology and spreading in the same fashion as epinephrine. These differences in morphology and spreading behavior were accompanied by changes in the distribution of F-actin, as judged by phalladicin staining and fluorescence microscopy. We suggest that cAMP and microfilaments play important roles in receptor-mediated neuroregulation of macrophage function.
    [Abstract] [Full Text] [Related] [New Search]